skip to main content


Search for: All records

Creators/Authors contains: "Shapiro, Paul R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    When the first galaxies formed and starlight escaped into the intergalactic medium to reionize it, galaxy formation and reionization were both highly inhomogeneous in time and space, and fully coupled by mutual feedback. To show how this imprinted the UV luminosity function (UVLF) of reionization-era galaxies, we use our large-scale, radiation-hydrodynamics simulation CoDa II to derive the time- and space-varying halo mass function and UVLF, from z ≃ 6–15. That UVLF correlates strongly with local reionization redshift: earlier-reionizing regions have UVLFs that are higher, more extended to brighter magnitudes, and flatter at the faint end than later-reionizing regions observed at the same z. In general, as a region reionizes, the faint-end slope of its local UVLF flattens, and, by z = 6 (when reionization ended), the global UVLF, too, exhibits a flattened faint-end slope, ‘rolling-over’ at MUV ≳ −17. CoDa II’s UVLF is broadly consistent with cluster-lensed galaxy observations of the Hubble Frontier Fields at z = 6–8, including the faint end, except for the faintest data point at z = 6, based on one galaxy at MUV = −12.5. According to CoDa II, the probability of observing the latter is $\sim 5~{{\ \rm per\ cent}}$. However, the effective volume searched at this magnitude is very small, and is thus subject to significant cosmic variance. We find that previous methods adopted to calculate the uncertainty due to cosmic variance underestimated it on such small scales by a factor of 2–4, primarily by underestimating the variance in halo abundance when the sample volume is small.

     
    more » « less
  2. ABSTRACT

    Patchy cosmic reionization resulted in the ionizing UV background asynchronous rise across the Universe. The latter might have left imprints visible in present-day observations. Several numerical simulation-based studies show correlations between the reionization time and overdensities and object masses today. To remove the mass from the study, as it may not be the sole important parameter, this paper focuses solely on the properties of paired haloes within the same mass range as the Milky Way. For this purpose, it uses CoDaII, a fully coupled radiation hydrodynamics reionization simulation of the local Universe. This simulation holds a halo pair representing the Local Group, in addition to other pairs, sharing similar mass, mass ratio, distance separation, and isolation criteria but in other environments, alongside isolated haloes within the same mass range. Investigations of the paired halo reionization histories reveal a wide diversity although always inside-out, given our reionization model. Within this model, haloes in a close pair tend to be reionized at the same time but being in a pair does not bring to an earlier time their mean reionization. The only significant trend is found between the total energy at z = 0 of the pairs and their mean reionization time: Pairs with the smallest total energy (bound) are reionized up to 50 Myr earlier than others (unbound). Above all, this study reveals the variety of reionization histories undergone by halo pairs similar to the Local Group, that of the Local Group being far from an average one. In our model, its reionization time is ∼625 Myr against 660 ± 4 Myr (z ∼ 8.25 against 7.87 ± 0.02) on average.

     
    more » « less
  3. Abstract

    During reionization, a fraction of galactic Lyαemission is scattered in the intergalactic medium (IGM) and appears as diffuse light extending megaparsecs from the source. We investigate how to probe the properties of the early galaxies and their surrounding IGM using this scattered light. We create a Monte Carlo algorithm to track individual photons and reproduce several test cases from previous literature. Then, we run our code on the simulated IGM of the CoDaII simulation. We find that the scattered light can leave an observable imprint on the emergent spectrum if collected over several square arcminutes. Scattering can redden the emission by increasing the path lengths of photons, but it can also make the photons bluer by upscattering them according to the peculiar motion of the scatterer. The photons emitted on the far blue side of the resonance appear more extended in both frequency and space compared to those emitted near the resonance. This provides a discriminating feature for the blueward emission, which cannot be constrained from the unscattered light coming directly from the source. The ionization state of the IGM also affects the scattered light spectrum. When the source is in a small Hiiregion, the emission goes through more scatterings in the surrounding Hiregion regardless of the initial frequency and ends up more redshifted and spatially extended. This can result in a weakening of the scattered light toward highzduring reionization. Our results provide a framework for interpreting the scattered light to be measured by high-zintegral-field-unit surveys.

     
    more » « less
  4. Abstract

    Using the CoDa II simulation, we study the Lyαtransmissivity of the intergalactic medium (IGM) during reionization. Atz> 6, a typical galaxy without an active galactic nucleus fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extend to the red side of Lyα, suppressing the transmission up to roughly the circular velocity of the galaxy. In some sight lines, an optically thin blob generated by a supernova in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Redward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger Hiiregions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The Hiiregions are highly nonspherical, causing both sight-line-to-sight-line and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within Hiiregions strongly attenuate the emission for certain sight lines. All these factors add to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies withMUV≥ −21 atz≥ 7, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy.

     
    more » « less
  5. ABSTRACT

    Cosmic reionization was driven by the imbalance between early sources and sinks of ionizing radiation, both of which were dominated by small-scale structure and are thus usually treated in cosmological reionization simulations by subgrid modelling. The recombination rate of intergalactic hydrogen is customarily boosted by a subgrid clumping factor, 〈n2〉/〈n〉2, which corrects for unresolved fluctuations in gas density n on scales below the grid-spacing of coarse-grained simulations. We investigate in detail the impact of this inhomogeneous subgrid clumping on reionization and its observables, as follows: (1) Previous attempts generally underestimated the clumping factor because of insufficient mass resolution. We perform a high-resolution N-body simulation that resolves haloes down to the pre-reionization Jeans mass to derive the time-dependent, spatially varying local clumping factor and a fitting formula for its correlation with local overdensity. (2) We then perform a large-scale N-body and radiative transfer simulation that accounts for this inhomogeneous subgrid clumping by applying this clumping factor-overdensity correlation. Boosting recombination significantly slows the expansion of ionized regions, which delays completion of reionization and suppresses 21 cm power spectra on large scales in the later stages of reionization. (3) We also consider a simplified prescription in which the globally averaged, time-evolving clumping factor from the same high-resolution N-body simulation is applied uniformly to all cells in the reionization simulation, instead. Observables computed with this model agree fairly well with those from the inhomogeneous clumping model, e.g. predicting 21 cm power spectra to within 20 per cent error, suggesting it may be a useful approximation.

     
    more » « less